
PhraseFlow: Designs and Empirical Studies of Phrase-Level
Input

Mingrui "Ray" Zhang
The Information School
University of Washington

Seattle, WA
mingrui@uw.edu

Shumin Zhai
Google

Mountain View, CA
zhai@acm.org

Figure 1: The final version of PhraseFlow. (a) When the user typed “id” (but meant “is”) , (b) it was first corrected to “I’d”
after the first space press. However, the correction was not committed. (c) After the user typed text “it”, the word was finally
corrected and committed as “is” on the second space press

ABSTRACT
Decoding on phrase-level may afford more correction accuracy
than on word-level according to previous research. However, how
phrase-level input affects the user typing behavior, and how to
design the interaction to make it practical remain under explored.
We present PhraseFlow, a phrase-level input keyboard that is able
to correct previous text based on the subsequently input sequences.
Computational studies show that phrase-level input reduces the
error rate of autocorrection by over 16%. We found that phrase-
level input introduced extra cognitive load to the user that hindered
their performance. Through an iterative design-implement-research
process, we optimized the design of PhraseFlow that alleviated
the cognitive load. An in-lab study shows that users could adopt
PhraseFlow quickly, resulting in 19% fewer error without losing
speed. In real-life settings, we conducted a six-day deployment
study with 42 participants, showing that 78.6% of the users would
like to have the phrase-level input feature in future keyboards.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’21, May 8–13, 2021, Yokohama, Japan
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8096-6/21/05. . . $15.00
https://doi.org/10.1145/3411764.3445166

CCS CONCEPTS
• Human-centered computing→ Text input.

KEYWORDS
Text entry, autocorrection, phrase-level input, keyboard

ACM Reference Format:
Mingrui "Ray" Zhang and Shumin Zhai. 2021. PhraseFlow: Designs and
Empirical Studies of Phrase-Level Input. In CHI Conference on Human Factors
in Computing Systems (CHI ’21), May 8–13, 2021, Yokohama, Japan. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3411764.3445166

1 INTRODUCTION
Autocorrection has become an essential part of touchscreen smart-
phone keyboards. Due to the small screen size relative to the finger
width, fast typing on a smartphone without autocorrection can pro-
duce up to 38% word errors [5, 14]. To remedy the problem, given a
sequence of touch points, a keyboard decoder can use spatial and
language models to find the best candidate and performs correction
on the typed text. Simulation studies show such auto-corrections
can dramatically reduce the error rate in touch keyboards [14]. In-
deed, commercial mobile keyboards such as Gboard [17], SwiftKey
[26] and the iOS keyboard all provide word-level decoding, which
corrects the latest typed literal string to an in-vocabulary word: for
example, correcting loce to love. Banovic et al. [6] has shown that
with a good autocorrection decoder, the user typed 31% faster than
without autocorrection.

However, word-level decoding has two major drawbacks. First,
at times it can be difficult for the decoder to determine if a word

https://doi.org/10.1145/3411764.3445166
https://doi.org/10.1145/3411764.3445166

CHI ’21, May 8–13, 2021, Yokohama, Japan Mingrui "Ray" Zhang and Shumin Zhai

Table 1: Correction examples with word-level Gboard and
phrase-level PhraseFlow. Phrase-level decoding can correct
previous text using the future input context to avoid false
corrections (row 1 & 2) or no corrections (row 3 & 4). It is
also able to correct space-related errors (row 5 & 6)

Raw Input Word-level Phrase-level
Decoding Decoding

stidf penalty stuff penalty stiff penalty
what id your what i’d your what is your
Feams canyon Feams canyon Great Canyon
Kps angeles Kps Angeles Los Angeles

Xommu ication Xommu ication Communication
facin g north facing g north facing north

makes sense without incorporating the future input context. For
example, if a user types he loces, the keyboard may correct loces to
loves; however, if the user continues typing in Paris, the expected
correction should be lives. Not incorporating the future context
can either lead to wrong corrections or fail to correct the text.
Second, space-related errors often cannot be handled well without
future context. Word-level decoding uses the space key tap as an
immediate and deterministic commit signal, thus does not afford
the benefit of correcting for superfluous touch on it or alternative
possible user intentions such as aiming for the C V B N keys above
the space key. As a consequence, space-related errors such as th e,
iter ational can not be properly handled. Furthermore, a word-level
decoder often fails to correct contiguous text without spaces such
as theboyiscominghomenow, as it mainly consider word candidates.

One possible solution to the above problems is to decode touch
points on phrase-level, instead of only decoding and correcting the
touch points of the last word. Phrase-level decoding may continue
to decode the touch points even if the space key is pressed, and
outputs phrase candidates. Velocitap [37] was one of the first at-
tempts towards this idea: it presented a sentence-based decoder that
was able to correct multiple words at a time. Follow-up projects
by Vertanen and colleagues [34, 35] further investigated smart-
watch devices decoding accuracy and typing performance on word
level, multi-words level and sentence level. We show examples of
word and phrase-level correction results in Table 1, based on actual
results from Gboard and a version of our phrase-level keyboard,
PhraseFlow, presented later in this paper.

However, making phrase-level input practical faces many chal-
lenges. First, corrections beyond the last typed word require the
user to pay attention to the early part of the phrase being typed;
Second, delayed correction of the previous text requires the user
to trust that the decoder would eventually and successfully cor-
rect the errors. If the phrase auto-correction failures, the delayed
manual repair cost could be higher. Building upon the previous
work, we present PhraseFlow, a keyboard prototype that focused on
designing and studying the interfaces to support the phrase-level
decoding. We limited the scope only to touch typing, in contrast
to gesture typing [41]. PhraseFlow aims to address three essential
types of questions in the phrase-level input interaction:

(1) How to change and design the interface and interactions
that match phrase-level decoding?

(2) How does phrase-level input affect the user’s typing behavior
and cognitive load?

(3) What are the user reactions and experiences when using
PhraseFlow as their daily keyboard?

We modified the Finite State Transducer (FST) based decoder
[29] of Gboard to support phrase level decoding.We then performed
simulation tests on the touch data collected from a composition
task. The results show that word-level decoding had 7.76% word
error rate (WER) while phrase-level decoding had 6.47% WER, a
16.6% relative error reduction on this data set. Space related errors
were also corrected by PhraseFlow.

To explore the design space of PhraseFlow, we iterated on mul-
tiple options of: 1. visual correction effects; 2. decoding commit
gesture and behavior; and 3. suggestion displays. We first built a ver-
sion of PhraseFlowwith similar designs to the previous phrase-level
input work [34, 35, 37]. The study results showed that phrase-level
input with such designs introduced extra cognitive loads to the
user, and alternative designs were needed to mitigate the effect. By
incorporating empirical study results from the iteration, our final
version keyboard managed to reduce the cognitive load and reached
a comparable level of performance of the commercial keyboard. To
test the user acceptance of the keyboard, we conducted a six-day de-
ployment study with 42 participants. During the study, participants
used PhraseFlow as their primary keyboard. The survey results
showed that overall 78.6% of the participants would like to have
phrase-level typing in their future keyboards, in comparison to 7.1%
of the participants disliked the feature. Overall, the study results
suggest phrase level input is a promising feature for future mobile
keyboards.

Drawing from themany lessons in implementing PhraseFlow, we
offer design guidelines for future keyboards with phrase-level input,
and identify the challenges and opportunities to further improve
phase level input.

2 CHALLENGES OF DESIGNING
PHRASEFLOW

The input chunk for typewriter-like physical keyboards is on char-
acter level: each key press modifies one character at a time. With
smart functions such as auto-correction andword-prediction, touch-
screen keyboards have enlarged the input chunk into word level: a
string of characters inaccurately entered can be corrected into a
likely intended word upon the press of the space key, which relaxes
the need to type each character accurately. The basic research ques-
tion of PhraseFlow is how to further enlarge the input chunk
to phrase level, as multiple words are corrected through one oper-
ation. Studies in human factors and psychology tended to find word
as the basic chunk of typing [19, 32]. This means that people mainly
focus on only the current word when typing. Enlarging the input
chunk into phrase level requires the user to pay extra attention
on the previous text, which might hinder the typing performance.
PhraseFlow therefore needs to overcome three new design chal-
lenges:

C1. How to signal the change when corrections happen.
As the phrase-level input might change multiple words at the same

PhraseFlow: Designs and Empirical Studies of Phrase-Level Input CHI ’21, May 8–13, 2021, Yokohama, Japan

time (and change the same word multiple times), we need to design
effective feedback that is salient enough to inform the user about
the correction, yet unobtrusive to avoid distracting the user from
typing.

C2. How to design multi-word candidates and text output
to reduce user’s cognitive load. For word-level keyboards, the
user only attends the latest word. Once the last word is entered, they
will shift their attention to the next one. For phrase-level keyboards,
users need to attend to multiple words during typing. To reduce
the cognitive load, we need to explore ways of presenting the text
and suggestions effectively.

C3. How to minimize correction failures. Manually recov-
ering from a correction failure in phrase-level costs more than
word-level corrections, because the failure can happen words away.
While incorporating longer context in the decoding process might
improve the accuracy, recovering a correction failure further away
can also be more costly. We thus need to design better interactions
to minimize correction failures.

To our knowledge there is no single research method that can
lead to all the insights needed to make significant keyboard per-
formance progress. We therefore applied a variety of HCI research
methods to address the challenges before us, including prototyping,
simulation (offline computational tests), and lab-based composi-
tion or transcription typing, with both performance and subjective
experience measurements. As a research vehicle We built Phrase-
Flow based on the Gboard [17] code base, bearing all its strengths
and limitations. On the positive side, we leveraged many years of
engineering work of Gboard on product polishing, computational
performance and UI iteration, so a meaningful difference caused
by the phrase-level input could be found against a strong baseline.
On the other hand, Gboard as a commercial keyboard has a very
compact language model with short span ngrams. Note that previ-
ous work on the trade-off between the language model size and its
correction power, albeit on a limited data set, did not show dramatic
increase in accuracy from very large n-gram models [37].

3 RELATEDWORK
3.1 Keyboard Decoding Models
The decoder of a smartphone keyboard contains two essential mod-
els: the spatial model and the language model [9, 14, 16, 21]. The
spatial model relates intended keys to the probability distributions
of touch coordinates and other features [5, 13, 40, 44]. The distribu-
tion is then combined with a language model, such as an n-gram
back-off model [21], to correctly decode noisy touch events into the
intended text [14, 16]. Borrowing the idea from speech recognition,
the classic approach to combining the spatial model and language
model estimations is through the Bayes’ rule, as in Goodman et al.
[16]. Practical keyboards may also model spelling errors by adding
letter insertion and deletion probability estimates in its decoding
algorithms [29].

Various works have been proposed to improve the text entry
decoding process. For example, the Finger Fitts Law [8] proposed
a dual-distribution to model finger’s touch point distribution ac-
curately; WalkType [15] incorporated the accelerometer data to
improve the touch accuracy during walking conditions; Yin et al.

proposed a hierarchical spatial backoff model to make the touch-
screen keyboards adaptive to individuals and postures [40]. Weir et
al. [38] utilized the touch pressure to "lock" the characters during
decoding. Zhu et al. [44] showed that participants could type rea-
sonably fast on an invisible keyboard with adjusted spatial models.

3.2 Phrase-level Text Entry
We are not the first to explore phrase-level text entry techniques.
Production level keyboards (e.g., Google Gboard) have long had
a “space omission” feature which allows its user to enter multiple
words a time without a space separator, although only reliably for
the most common short phrases. For example, “thankyouverymuch”
is decoded into “Thank you very much”. Vertanen et al. [37] de-
veloped VelociTap, a phrase-level decoder for mobile text entry.
VelociTap combines a 4-gram word model and a 12-gram character
model to decode the touch inputs into correct sentences. In one
simulated replay study of typing common phrases on a watch-sized
keyboard, assuming perfect word deliminator input [34], Vertanen
and colleagues demonstrated that phrase-level decoding could re-
duce the character error rate (CER) from 2.3% to 1.8%. Together
with its follow-up projects [34, 35], various factors such as visual
feedback on touched keys, keyboard size, word-delimiter actions
(e.g. a right swipe), and decoding scopes were also investigated for
phrase-level input.

The previous work on phrase-level input focused on the algo-
rithms and the performance differences between phrase-level and
word-level decoders. An important difference between PhraseFlow
and previous work is that previous research all treated the space
press as a deterministic word delimiter during decoding, while
PhraseFlow treats it as a decodable press, so as to minimize space-
related errors.

Commercial keyboards such as Gboard and iOS keyboard in re-
cent years have also released a feature called post-correction [29],
which is a subset to phrase-level correction. Post-correction will
revise the one word preceding the current typing word if the cor-
rection confidence is high. However, post-correction only correct at
most one previous word, limiting the power of using the subsequent
context. It also does not correct the space-related errors mentioned
in the introduction. For PhraseFlow, we explored different word
limits that the keyboard can correct, derived a more generalized de-
sign of the phrase-level correction interaction, and filled the gap in
the lack of empirical results on phrase-level correction techniques
in the literature.

Typing research tended to find word as the basic processing
chunk [19, 32]. On the other hand, experience and practice tended
to increase the chunk size of information processing [27] or shift
motor control behavior to higher levels of control hierarchy [30].
With proper design, fluent typists might adapt to the phrase-level
input after practising.

3.3 Interaction and Interfaces for Touch Screen
Keyboards

The interface of a touch screen keyboard can affect the user’s typing
behavior significantly. Arnold et al. [4] investigated the prediction
interface by comparing word and phrase suggestions, finding that
phrase suggestions affected the input contents more than the word

CHI ’21, May 8–13, 2021, Yokohama, Japan Mingrui "Ray" Zhang and Shumin Zhai

suggestions. Quinn and Zhai [31] conducted a cost-benefit study on
suggestion interactions, finding that always showing suggestions
required extra attention and could potentially hinder the typing per-
formance. Similar results was also found by Zhang et al. [43] in their
study of comparing text entry performance under different speed-
accuracy conditions. WiseType [1] compared the visual effects of
auto-correction and error-indication, finding that color-coded text
background could improve the typing speed and accuracy. We in-
corporated many of the previous findings as guidance to design
PhraseFlow interactions.

4 PHRASE-LEVEL DECODER
The current decoder of Gboard [17] is a finite-state transducer (FST)
[29] containing a spatial keyboard model and a n-gram language
model consisting a 164K English word vocabulary and 1.3M ngrams
(n up to 5). The original decoder would commit the last word and
reset its status when the space key was pressed, and then restart the
FST state with the touch points of the next word. For example, if the
user typed inter and pressed the space key, the decoder would reset
and output inter as the best candidate; when the user continued
typing ational, the decoder would only decode the touchpoints of
ational, failing to correct the whole typing to international.

To turn the decoder into phrase level, we need to make the touch
on space key decodable. We thus disabled the reset action of the
decoder when a space was entered, so that it could continue the
decoding process and treat the space touch as a normal touch point
on the letter keys. In this way, the decoder was able to output
phrase suggestions based on a touch sequence across the space
key. For example, inter ational in which n is mistyped as space,
would be treated as a whole sequence, including the space in the
middle, and be decoded to international. The decoder could also
handle longer phrases, such as correcting “I love in new yirk” into
“I live in New York”, as it now treats a multi-word touch sequence
as decodable, rather than splitting the sequence into five touch
sequences separated by the space key and resetting the state after
each sequence.

Similar to VelociTap [37], to enable decoding touch sequence
without word-delimiters, we also decreased the penalty of omitting
a space between words, so that the decoder was able to handle
contiguous text without space in between, such as whatstheweath-
ertoday.

5 PHRASEFLOW V1.0
Figure 2 shows the interface of PhraseFlow v1.0. The workflow is
as follows:

(1) The user types the raw text, which might contains typos and
spaces.

(2) PhraseFlow decodes the touch input and displays the candi-
dates in the suggestion bar. The text being decoded is under-
lined in the text window, indicating the range that might be
updated in the future. We call this part of the text "the active
text".

(3) PhraseFlow will apply the candidate to the underlined text
when the user performs a commit action. The decoder will
reset its state and remove the underline.

(4) Before committing, the user can modify the underlined text
to update the decoded candidates.

Figure 2: The interface of PhraseFlow v1.0. The keyboard
layout was the same as Gboard. The typed text here is Rje
darkmettet, and the autocorrection candidate The darkmat-
ter is in bold. Three candidates are shown in the list: the
literal string, the autocorrection candidate, and the second
best candidate

There were three kinds of commit actions: by selecting the can-
didate in the suggestion bar, by pressing a punctuation key, or the
keyboard would commit every nth space the user typed. The later
two actions would apply the default autocorrection candidate to the
text. For the example in the figure, if the n for every nth space was
set to 3, then the keyboard would commit The dark matter when
the user pressed a space, as there were already two spaces typed in
the active text.

5.1 Interface and Interaction Design
For the first version of PhraseFlow, we explored several design op-
tions on the commit method, visual effect of correction, suggestion
bar display, and active text marker. We chose those options as they
were reported to affect the typing performance in the previous
work [1, 34, 35, 37].

Commit Method Since the space press was no longer a commit
action with PhraseFlow, we needed to design a new interaction to
let the user commit the correction candidate. Previous work [37]
considered using swipe as the commit method. However, swipe
also required the user to perform a very different gesture during
tap-typing, and the gesture also confused the user with gesture
typing on mobile keyboards.

We made PhraseFlow commit the correction to the active text
on every nth space the user typed, i.e., when the user typed the
nth space in the active text (we call it nth space commit method).
The rationale was that the users were already used to the space
commit method with current keyboards, thus extra interaction
for committing would increase the cognitive and manual control
cost. Space press was a necessary step to compose the text, thus it
was natural as a committing option. If n was set to 1, PhraseFlow
would behave exactly the same as the current word-level decoding

PhraseFlow: Designs and Empirical Studies of Phrase-Level Input CHI ’21, May 8–13, 2021, Yokohama, Japan

keyboards, i.e. committing the text on each space press. A larger
n would potentially offer greater post correction power, but also
demands more user attention on the longer span active text.

Besides the space press, current keyboards also support pressing
on punctuation keys, or selecting the candidate in the suggestion
bar to trigger the committing, and these two actions were kept in
PhraseFlow. Whenever the correction is committed, the decoder
will reset its decoding status and restart the decoding for new
inputs.

Visual Effect of Correction As pointed out in the design chal-
lenge section C1, it is important to design a good signal when
correction happens. For example, if is coning home is corrected to
is coming home, the user should be able to notice the change. We
experimented with three feedback effects to indicate the correction
after the user performs a committing action: 1) Background flash.
When a string of text was corrected to another one, its background
color would flash for 400ms. This is used by many current commer-
cial keyboards. 2) Color flash. The color of the changed text would
flash when it was corrected. 3) Color change. The color of the text
would change to blue when it was corrected, and would change
back when a new input action (such as cursor-moving, typing)
happened. The three effects are shown in Figure 3(a).

Active Text Marker As is often suggested [28, 39], a system’s
internal state should be appropriately represented to the user. To
make the user aware the range of the text that might be changed.
We studied three active text markers of the active text shown in
Figure 3(b): underline, gray color, and no-marker. The purpose was
to have a visual effect that was not distracting but could also be
informative of the active text range, echoing to design challenge
C2. The no-marker design is used in iOS .

Suggestion Bar Display Since the decoded candidate may con-
tains multiple words, the default display option of the suggestion
bar, i.e., always displaying three candidates, might make the user
feel overwhelmed. To reduce the cognitive load of the user (chal-
lenge C2) and also make the candidate text always visible, we
adopted a dynamic displaying design illustrated in Figure 3(c): the
suggestion bar will first display all three candidates; as the text
grows, it will only display two candidates and eventually decrease
to one candidate if the active text is too long before the commit-
ting. In this way, we can show the complete candidate information
without squeezing or hiding the text.

5.2 Study 1: Evaluating Design Options
After implemented the above design options, we conducted a pilot
study with 30 participants (24 male, 6 female, 21 used Android,
9 used iOS) to test different options including the n values of the
commit method (with n = 3,4,5), the visual correction effects, and the
active text markers. The participants were instructed to compose
messages freely using the keyboard and rate their preferences on
each of the design.

The results of the study showed that for the nth commit method,
participants generally preferred shorter n such as 3 and 4. Increas-
ing n to 5 would make the participants feel too uncertain about
whether the keyboard would correct the typing or not. For correc-
tion effects, background flash was the most preferred effect, which
was not distracting but also salient enough. For active text marker,

participants generally disliked the no-marker effect, complaining
that it felt “fishy” of what the keyboard was doing. Underline was
themost preferredmarker, which was also currently used in Gboard.
The study led us to choose the n=4 commit method, since the de-
coder could incorporate longer context. It also led us choose the
background flash and underline for the correction effect and the
active text marker respectively.

5.3 Study 2: Performance Simulation of
PhraseFlow V1.0

This study used simulations, or "computational experiments" [14]
to measure the accuracy of PhraseFlow v1.0 on autocorrection.
Unlike Fowler et al. [14] which used model generated data in their
simulation, we used a “remulation” approach [7] in this study: We
recorded touch input data set collected in a text composition task.
We then ran the data set through both the PhraseFlow v1.0 decoder
and its Gboard word-level baseline decoder in a keyboard simulator.
Emulating user typing behavior on a mobile phone, the simulator
took touch coordinate sequences as input, then simulated the noisy
touch input on a keyboard layout as input to the decoder. The
simulator then compared the decoder output with the expected
text, and calculated Word Error Rate (WER) of the output results.

To collect the evaluation data set, we conducted a composition
study with 12 participants (7 male, 5 female) to gather their touch
points on a keyboard without auto-correction functions. Modelled
after the study of composition types by Vertanen and Kristensson
[36], we designed six composition prompts listed in Table 2. The
participants were instructed to type a long message based on the
prompt fast and not to care about making errors. For each prompt,
the typing lasted for three minutes. The study was conducted on a
Pixel 3 smartphone, and autocorrection was disabled for the test.
After the composition of each prompt, we asked the participants
to read their raw text and type the corresponding correct message
they intended to compose on a laptop. To ensure that participants
typed the correct text on laptop, the experimenter and the partici-
pants reviewed the text together and corrected the errors if there
were any. We logged their raw touch points, the raw text, and the
corresponding correct text for simulation. In total, we collected
72 phrases composed of 4955 words. The average word length for
prompt P1 to P6 was 63 words, 75 words, 66 words, 69 words, 64
words and 77 words respectively. Participants were compensated
with $25 for the 45-minute study.

We measured the error rate of the original raw data in regards
to the provided correct text, using character error rate (CER) and
word error rate (WER). WER is the word-level edit distance [22].
The average CER was 6.18% (SD=2.9%) and the average WER was
26.4% (SD=11.1%). To conduct the offline computational evaluation,
we kept the space key touch points but removed all punctuation-
related touch points in the log data, fed the logged touch points
into the simulator as the raw input (by replaying the touch points),
and compared the simulation output with the correct text provided
by the participants. We compared the current word-level decoder of
Gboard, and the PhraseFlow decoder with the every-fourth-space
commit method. The WER for the Gboard baseline was 7.76%, and
7.13% (n=4) for PhraseFlow. This 8.1% relative error reduction was a
modest but clear improvement in error correction even on a mobile

CHI ’21, May 8–13, 2021, Yokohama, Japan Mingrui "Ray" Zhang and Shumin Zhai

Figure 3: (a) Three visual effects of correction: when committing is coning home, the second row shows the Background Flash
effect; the third row shows the Color Flash and the Color Change effect. (b) Three markers of the active text. (c) The suggestion
bar display. As the input lengthens, the number of candidates decreases from three (top) to two (middle), and eventually one
(bottom)

grade compact language model (set at 164K vocabulary and 1.3M
ngrams). The WER was 7.14%, 7.03% and 7.08% when n was set to 2,
3 and 5. Given the similar performance, we fixed on n = 4 because
of the result of study 1.

It is difficult to precisely compare this result with those by Verta-
nen and colleagues [34, 37]. Their results varied with a large set of
decoding (from 0.4M to 194Mword ngrams), UI (including no space
separation between words), task (such as Enron mobile phrase set
transcription), and form factor (phone vs. watch) variations. They
generally show that more errors were corrected in phrase-level
decoding than in word-level decoding. For example, in one simu-
lation that replayed phrase input data collected on a watch-sized
keyboard but assuming perfect space separation between words,
they showed the character error rate (CER) reduced from 2.3% to
1.8% when the input and decoding size increased one word to five
or six words. Assuming character errors were evenly distributed in
words and the average word length were 4.7 letters as in common
English, the corresponding word error rates (WER) were reduced
from 10.35% to 8.18%1.

5.4 Study 3: Pilot Study of PhraseFlow V1.0
We conducted a pilot study to test our design of PhraseFlow v1.0
in comparison to a word level baseline. We developed a text editor
application shown in Figure 4 as the experimental apparatus. The
application uses the transcription sequence model of Zhang and
1WER was calcualted using the formula 1 −CER4.7

Table 2: Six prompts for the composition tasks

P1 Suppose you are going to have dinner
with your friend. Write a text
message to schedule the time and places

P2 Write down an event happened recently
P3 Write about the local weather

and your feelings about it
P4 Write about a recent trip experience
P5 Write down a recommendation about

this study to your friend
P6 Free composition.

Write down whatever in your mind

Wobbrock [42] for evaluation. Transcription sequence contains the
sequence of the transcribed text each time its value changes, and
by comparing the adjacent two sequences, it is able to analyze
the dynamic text change during the typing procedure. Instead of
composition tasks, we chose text transcription tasks for evaluation
studies, as the text contents were controlled. Six participants (4male,
2 female) were recruited via convenience sampling. The participants
were told to enter the text shown on the screen as accurately and fast
as possible using two keyboards: PhraseFlow v1.0 and unmodified
Gboard. They were also allowed to use their comfortable posture
for the task (all used two-thumb posture). The order of the keyboard
was balanced.We randomly sampled 30 phrases from theMackenzie
phraseset [24] for each keyboard session. Afterwards, we conducted
a short interview to gather their feedback. The participants were
compensated with 15 USD for the 30-minute study.

Figure 4: The text editor application used in the study. Hit-
ting "undo" will restart the current trial

In total, 360 phrases were collected. We calculate words per
minute (WPM) by subtracting the first character timestamp from
the last character timestamp, as noted in [23]. The average typing
speed was 52.3 WPM in the Gboard condition, and 43.5 WPM in
the PhraseFlow condition. We also calculated the character error
rate (CER) and word error rate (WER). The average CER was 0.6%

PhraseFlow: Designs and Empirical Studies of Phrase-Level Input CHI ’21, May 8–13, 2021, Yokohama, Japan

Table 3: The average speed and accuracy of each participant

Speed (wpm) Error (CER) % Error (WER) %
Gboard PhraseFlow Gboard PhraseFlow Gboard PhraseFlow

p1 35.6 23.0 0.8 1.0 3.0 4.7
p2 44.4 35.6 0 0.7 0 2.4
p3 62.1 49.1 0.1 0.4 3.1 0.5
p4 54.0 49.6 0.4 0.9 1.1 3.8
p5 64.3 60.5 0.4 0.6 1.9 1.9
p6 53.5 43.2 1.7 0.7 4.8 1.5

in the Gboard condition, and 0.7% in the PhraseFlow condition.
The average WER was 2.3% in the Gboard condition and 2.4% in
the PhraseFlow condition. Table 3 shows the performance of each
participant.

To gain a deeper understanding of their typing behaviors, we
analyzed the inter-key interval (IKI) [12] which was the time dif-
ference between two keypress events. We divided the IKI into two
categories: the in-word IKI, i.e., the time interval between two key
presses within a word; and the between-word IKI, i.e., the time
interval between the presses of space and the next word. The aver-
age in-word IKI was 0.192s for Gboard and 0.210s for PhraseFlow.
The average between-word IKI was 0.265s for Gboard and 0.311s
for PhraseFlow. The larger difference on the between-word IKIs
indicated that participants spent longer time to start typing a new
word after pressing a space.

5.5 Discussion of the Pilot Study
What were the factors that caused the participants to type 10 WPM
slower using PhraseFlow? The feedback of the participants pointed
to two main reasons: 1) The raw text showed in the text output
window was distracting. Although there was underline indicating
that the text might be corrected later, many participants mentioned
that looking at the raw text made them feel hesitant. P6 commented
that “(PhraseFlow) is stressful because you look at the raw text and
you want to fix but it finally gets fixed.” The hesitation might have
caused slower IKIs for PhraseFlow. 2) The content of the suggestion
bar was changing too much. During composing, not only each
candidate length grew, the number of candidates also changed to fit
in the bar space. Longer candidates required the user to spend more
time reviewing them, as P1 commented, “there is just too much going
on in the suggestion bar. I have to read longer text and sometimes the
number of options changes. It is distracting.”

The analysis of IKIs also sheds light on participants’ cognitive
load during typing. Cognitive load may reflect the exterior infor-
mation need during a task [33]. Studies in writings have found that
shorter pauses contributed to higher writing fluency and lower
cognitive load [2], and people generally had longer pauses at word
boundaries [25]. The trend was similar from this study results:
the in-word IKIs were on average shorter than the between-word
IKIs, either in Gboard or PhraseFlow condition. However, the larger
between-word IKIs of PhraseFlow (0.311 second) than Gboard (0.265
second) indicated that after pressing spaces, the participants might

have carried greater cognitive load as they paused longer before
starting typing the new word.

Overall, this pilot study shows that supporting phrase level input
isn’t an easy HCI problem. The greater attention demand in Phrase-
Flow v1.0 might have hindered the users’ ability to take advantage
of its features.

6 PHRASEFLOW V2.0
The pilot study of PhraseFlow v1.0 clearly showed that alternative
designs on commit method and text display were needed. This led
to several changes in the design of PhrsaeFlow v2.0. Specifically,
we designed a buffer commit method to increase the correction
accuracy (challenge C3) and real time feedback to make the active
text less distracting (challenge C2). We describe each improvement
in detail as follows.

6.1 Buffer commit method
PhraseFlow v1.0 would commit all the active text and apply the
phrase level candidates at once when the nth space was pressed,
which caused the user to spend time reviewing the correction after
the commit. The user also had to spend more cognitive resources to
manage the results of space presses, since each space press behaves
differently (some would commit corrections while the rest would
not). In version 2, we designed a first-in-first-out buffer commit
method as shown in Figure 5: when the nth space was pressed,
only the first word in the active text would be committed with
its correction candidate; the remaining text would stay active. For
example, if n was set to 3, when the user typed thid is the and
space, only thid was committed and corrected to this; the active
text then became is the . In this way, there would always be a buffer
in the active text, which enabled the decoder to correct text in
a continuous manner. The space press behaves more consistently
therefore causing no surprise to the user. Buffer style can also handle
space related errors better than committing multiple words at once,
as all space presses will be decoded within the buffer. A punctuation
key press would commit and clear all remaining text in the buffer.

6.2 Real Time Correction Feedback
In the pilot study of PhraseFlow v1.0 we learnt that showing the
raw text distracted the users and caused the uncertainty whether
the text would be fixed later. We thus applied the partial decoding
results to the active text: when the user typed a space, the active

CHI ’21, May 8–13, 2021, Yokohama, Japan Mingrui "Ray" Zhang and Shumin Zhai

Figure 5: Buffer commit method in PhraseFlow v2.0. If the
keyboard commits on every 3rd spaces, the upper figure
shows the active text is dark matter, and the lower figure
shows when the space is pressed after is, dark is committed
("dark matter is" already had 2 spaces)

text before the space would be updated to the suggested corrections,
providing the real time correction feedback to the user. As shown
in Figure 5, the raw text typed was darl marrer, but the active text
was displayed as the correction. Since the correction was already
shown as the active text, we only show the word-level candidates
of the latest word in PhraseFlow v2.0 to make the suggestion bar
more familiar to the users and less distracting.

6.3 Study 4: In-lab Study of PhraseFlow V2.0
We conducted an in-lab study to test out the performance of the
modified designs. We recruited 12 people (6 male, 6 female). All
of the participants were familiar with mobile text entry and could
speak English fluently. They were also instructed to type in their
preferred hand postures (11 used two-thumb posture, 1 used one
thumb posture). We used a Pixel 3 XL for this study, and ran the
same text editor application to conduct transcription tasks. Each
participant was compensated with $25 for the one-hour study.

We compared two keyboards: Gboard and PhraseFlow v2.0. The
buffer length n was set to 4 for the nth space buffer commit method.
There were three identical parts of the study, with each part con-
taining two transcription sessions with each keyboard. The order
was balanced, and for each session, 20 different phrases from the
Mackenzie phrase set were randomly selected. Before the formal
sessions, participants practiced five phrases with each keyboard as
a warm up. Participants were told to type as fast and accurately as
possible, and that they could take a break between sessions. After
the typing task, the participants filled out an SUS usability survey
and a NASA-TLX survey [18] (for measuring the perceived work-
load). We also briefly interviewed the participants on their thoughts
of using the two keyboards.

6.4 Results
In total, we tested on 20x2x3x12=1440 phrases. The results are
shown in Figure 6. We analyzed all metrics using Wilcoxon signed-
rank test rather than the potentially more sensitive parametric
variance analysis. We observed that none of our performance met-
rics followed a normal distribution.

Speed There was no significant difference of keyboard on text
entry speed (p > .1). The average speeds for Gboard and PhraseFlow
were 63.8 wpm and 63.4 wpm.

Error Rate For Character Error Rate (CER), there was no sig-
nificant difference between Gboard and PhraseFlow (p > .1). The
average CER for Gboard was 0.017 while for PhraseFlow was 0.015.
However, the Word Error Rate (WER) for PhraseFlow was signifi-
cantly lower than Gboard (p < .05). The average WER was 0.052
for Gboard and was 0.042 for PhraseFlow, a 19.2% reduction.

Inter-key Interval (IKI) There was no significant difference on
between-word IKI (p > .1) of the two keyboards, but PhraseFlow
had significant higer in-word IKI than Gboard (p < .05). The aver-
age in-word IKI was 0.163 for Gboard and 0.166s for PhraseFlow;
the average between-word IKI was 0.224s for Gboard and 0.223s
for PhraseFlow. However, the difference of in-word IKI was smaller
than the pilot study (0.003s vs 0.018s). Given the fact that the users
had no experience in using phrase-level decoding keyboards in
their daily life, participants performed pretty well on PhraseFlow.
This also validated that our design of real time correction feedback
reduced users’ attention overload during typing.

Subjective Scores The SUS and TLX scores are shown in Figure
7, and the difference between the two keyboards was not significant
for SUS (p > .1) or TLX(p > .1). The median SUS score was 83.8
for Gboard and 80.0 for PhraseFlow, and the median SUS score
was 3.4 for Gboard and 3.4 for PhraseFlow. We looked into the
individual SUS scores, finding that five participants rated higher
score for Gboard, five higher for PhraseFlow, and two rated the same
scores, which meant the preferences among the participants were
split.

6.5 Discussion of the In-lab Study
In comparison to the results of PhraseFlow V1 in Study 3, the
results here were much improved. Even though PhraseFlow was
a novel method, participants could type with it at about the same
speed as with the Gboard word-level baseline, but made 19% less
word errors (after autocorrection). The results suggest that the
buffer commit method and the real time correction feedback in
PhraseFlow v2.0 imposed lower cognitive load than the designs
of PhraseFlow v1.0. The inter-word time interval was on par with
word-level baseline. We coded the interview comments, finding that
seven out of twelve participants commented that PhraseFlow had
better correction accuracy than Gboard. We also found two main
aspects of PhraseFlow that the participants still complained about:
1) The underlined active text was felt too long by some participants.
As P6 commented, “phrase level gives me more confidence, but I
kept looking back to ensure it has the right suggestions”. 2) Manual
correction was more difficult in PhraseFlow. When the previous
typed text was not corrected or corrected to a wrong word, the
participants had to move the cursor and manually correct the text,
instead of just deleting with backspace key taps and retyping with
Gboard.

We conducted an analysis on the second aspect in the study
data using the transcription sequence log. If text before the last
word was corrected but the space was not pressed, we counted
that correction as a manual correction. We found in total 79 error
instances that were corrected manually. Among them, 49 instances
were autocorrection failures, i.e., not corrected by the keyboard. For
example, wat was not corrected to war, and stattenmsy to statement.
This kind of error was caused by two overlapping reasons: the

PhraseFlow: Designs and Empirical Studies of Phrase-Level Input CHI ’21, May 8–13, 2021, Yokohama, Japan

Figure 6: The in-lab study results of Gboard and PhraseFlow. Error bars are one standard deviation

Figure 7: The SUS and TLX scores of the two keyboards. For
SUS score, the higher the better; for TLX score, the lower the
better

literal string typed was too far apart from the correct text, or the
language model and decoding algorithm were not strong enough
to handle the errors. Interestingly, there were also 30 instances that
could have been corrected by the keyboard (as validated offline), but
were manually corrected before the autocorrection. For example, jo
to no, and tat to that. This showed that the participants did not trust
enough on the correction ability of the keyboard, so they manually
corrected the word while it was still in the active text.

These analyses suggest the active text span set in PhraseFlow
2.0 was too long, at least for the current scale and power of the
language model used. We therefore decided to use smaller buffer
size in the next study.

7 STUDY 5: DEPLOYMENT STUDY
The in-lab study results demonstrated that novice users could easily
adopt PhraseFlow, and reached a similar level of speed performance
of the word-level baseline of Gboard while benefiting from 19%
fewer errors. However, transcription tasks as well as in-lab studies
were artificial and constrained. To study PhraseFlow in daily tasks
such as messaging, searching and writing emails, we conducted a
42 participants study in which we asked them to use PhraseFlow 2.0
Prototype as their main mobile keyboard for six days. We gathered
their experience through surveys, which offered us further insights
on what worked, what did not, and what future directions of phrase-
level input should take.

7.1 Preparation
To prepare for the deployment study, we further improved Phrase-
Flow v2.0 prototype based on the in-lab study results. Specifically,
we lowered n for the nth space commit method, and added per-
sonalization. The committing buffer length was decreased from
committing at every 4th space to 2nd and 3rd to reduce the text
area needed attention during typing. We ran the simulation test
again using the touch points from the composition study, with the
nth space set to 2, finding that the decoder had a WER of 6.47%,
which had 16.7% relative error reduction compared to the 7.76%
WER of Gboard. We also incorporated the personalization feature
of Gboard in PhraseFlow. Personalization could learn the words
that user typed and add them to the user-vocabulary, which was a
necessary feature for daily text entry such as typing names, emails
and abbreviations.

7.2 Participants
We posted the study description on several online forums, and
received 150 responses, and contacted 58 participants who owned
an Android phone, typed English, and knew how to install apk
on their mobile phones. We further excluded 7 participants who
used gesture typing exclusively in their daily mobile phone use, 1
participant who used multilingual keyboard, 1 participant who did
not use autocorrection, and 7 participants who did not finish the
keyboard apk installation step. We thus had 42 eligible participants
(34 male, 8 female) for the study. All participants received a 25 USD
gift card for the six-day deployment study.

7.3 Procedure
Before the deployment, we clearly expressed the goal of the study
was to “evaluate an experimental feature of the keyboard for fu-
ture improvement”, and that participants should provide “objective
and factual” evaluations in the later surveys, so as to minimize
the experimenter demand effects [11]. We sent the participants the
keyboard Android application Package (APK), together with expla-
nations on the phrase-level decoding feature. We explicitly told the
participants that we would not log any data from the keyboard to
address their privacy concerns. To keep the study at a manageable
length, we made the committing buffer length an between-subject
variable by separating the participants into two groups: one with
n set to 2 (committing at every 2nd space), and the other with n
set to 3 (we refer to the conditions as buffer-2 and buffer-3 in the

CHI ’21, May 8–13, 2021, Yokohama, Japan Mingrui "Ray" Zhang and Shumin Zhai

following sections). There were 21 participants in each group. Par-
ticipants were told to use PhraseFlow as their primary keyboard
throughout the study. The study lasted for six days, with a survey
sent out to the participants on the 2nd, 4th and the last day. The
survey contained three questions asking for their perception and
preference of PhraseFlow in comparison to previous word-level
keyboard, and open-ended comments. All questions were shown in
Table 4.

7.4 Results
On overall preference, most (78.6%) participants in the study liked
(ratings of 4 and 5) the PhraseFlow prototype and a small number (
7.1%) did not (ratings of 1 or 2). Table 5 gives more detailed rating
statistics. The participants rated PhraseFlow positively on prefer-
ence (“like to use”, mean score ranging from 4.0 to 4.3 depending
on days and the committing buffer length), perceived speed (mean
score from 3.0 to 3.6) and perceived accuracy (mean score from 3.3
to 3.7). Note that a neutral 3.0 rating would match PhraseFlow to
the participants’ years of experience using word level keyboard in
their everyday mobile interaction. Notably participants rated their
overall preference of phrase level input higher than their perceived
speed and accuracy improvement individually, suggesting their
positive experience had more contributing factors than speed and
accuracy alone.

Figure 8: Distributions of PhraseFlow preference scores
from 1 (don’t like it at all) to 5 (like it very much). A score
of 3 meant neutral opinion (represented with dashed lines)

Preference As illustrated in Figure 8, users’ ratings of Phrase-
Flow varied with committing buffer length and over days of use. For
example, on the overall preference (“like to use”) and in the shorter
committing buffer (buffer-2) group on Day 2, one user’s rating was
negative (2 on the scale of 1 to 5) , two neutral, 12 positive, and 6
very positive. On Day 4 and Day 6, the negative score in this group
disappeared. The trend of the longer committing buffer (buffer-3)
group, however, was the opposite. All users were positive or neu-
tral on Day 2, but three turned negative on Day 6. User comments
suggested “false correction happens” and “backspace cannot revert
the correction” as the primary reasons for the decreased rating.

Speed According to Figure 9, both groups increased their scores
gradually, especially for the buffer-3 group. It appears that under-
lining the active text revealed the nature of phrase-level correction
effectively enough to encourage user to type faster and trust the
keyboard more during the study.

Figure 9: Distributions of speed responses from the three
surveys. Compared to the word-level decoding keyboards
the participants used before, PhraseFlow was rated from 1
(much worse) to 5 (much better). A score of 3 meant neutral
opinion (represented with dashed lines)

Figure 10: Distributions of accuracy responses from the
three surveys. Compared to the word-level decoding key-
boards the participants used before, PhraseFlow was rated
from 1 (much worse) to 5 (much better). A score of 3 meant
neutral opinion (represented with dashed lines)

Accuracy As shown in Figure 10, people in buffer-2 group grad-
ually increased their ratings from neutral to more accurate, or even
much more accurate. However, people in buffer-3 group decreased
their scores, while they initially rated high accuracy in the first
survey.

We analyzed users’ comments using inductive coding. The ma-
jor themes emerged included issues of false corrections, correction
frequencies and reverting support. For false corrections, P3 men-
tioned that but otherwise was corrected to bit otherwise, and P18
commented that “It’s a little more cognitive overhead to go back to
3 words ago when there’s a mistake, even though mistakes are less
often.” For correction frequencies, three participants mentioned
that the phrase-level correction happened so few that they did not
notice it, which also caused the drop of their accuracy scores in
the n=3 group, as they expected initially that the keyboard would
increase the correction accuracy a lot. Five participants also com-
plained about that the backspace no longer reverted the correction,
which was a feature offered by current Gboard. As P12 pointed out,
“Sometimes a previous word is corrected and it’s not obvious how to
change that word back easily.”

Participants also mentioned that they got used to PhraseFlow
after using the keyboard for a while. For example, P13 complained
about the correction happened too frequent in the first two surveys,

PhraseFlow: Designs and Empirical Studies of Phrase-Level Input CHI ’21, May 8–13, 2021, Yokohama, Japan

Table 4: Survey questions for the deployment study

Survey Question

Q1. Do you think you would like to use the "phrase level correction"
feature in a future mobile keyboard?

Likert scale. From 1 (don’t like it at all) to 5 (like
it very much)

Q2. How do you think of your typing speed after using this keyboard
with the new feature?

Likert scale. From 1 (much slower than before)
to 5 (much faster than before)

Q3. How do you think of the accuracy of this keyboard with the new
feature?

Likert scale. From 1 (much worse than before) to
5 (much better than before)

Q4. Do you have any comments when using PhraseFlow? Open question

Table 5: The average scores ± 1 SD of the survey responses on preference, speed and accuracy of the PhraseFlow.

Preference Speed Accuracy
Day2 Day4 Day6 Day2 Day4 Day6 Day2 Day4 Day6

buffer-2 4.1±0.8 4.3±0.7 4.2±0.7 3.3±0.8 3.5±0.9 3.6±0.8 3.5±0.7 3.6±0.8 3.7±0.8
buffer-3 4.2±0.6 4.0±0.7 4.0±1.0 3.0±0.6 3.1±0.6 3.4±0.8 3.7±0.7 3.3±0.8 3.5±1.0

but got used to it in the last survey: “I have gotten more used to
it auto correcting a text twice. Love the feature.” Participants also
worried about the inaccuracy when they type uncommon words
in the first two surveys. As they continued using the keyboard,
they reported that the experience was smoother because of the
personalization feature. Although six days were long enough, five
participants reported that they still corrected immediately once an
error happened as with their previous keyboards. P25 commented
that “It’s hard to suppress the urge to correct the first word, so I don’t
think I really get to the part where PhraseFlow does its best work.”

8 DISCUSSION
Complementing the in-lab study, the deployment study results
showed that despite being a novel user experience, the phrase-
level decoding keyboard prototype PhraseFlow 2.0 was favorably
received by most users during and after a few days of use. It appears
the iterative design, development and research process has led to a
version of phrase typing keyboard practical and beneficial enough
as the primary keyboard in daily use by most users. In the following
we drew further insights and lessons from the PhraseFlow project
to inform future phrase level keyboard design. We also discuss the
current limitations and future directions for the longer term.

8.1 Design Suggestions for Phrase-level
Decoding Keyboard

Making the commit interaction consistent, and avoiding
changing multiple words at a time. From the inter-key inter-
val results, empirical studies showed that buffer commit method
is better than committing multiple words at once. With the buffer
commit method, the behavior of space press is consistent and pre-
dictable, which reduce the cognitive load of the user. It is also less
burdensome to the user for not having to review the correction of
multiple words. The simulation study also shows higher correction
accuracy of the buffer style committing by allowing the decoder

to take advantage of the subsequent context for each committed
word.

Visual cues need to manage the user’s attention judi-
ciously. It is important to use visual cues to convey the states
of the system (such as the active text), and notify when changes
happen. This is consistent with recommendations in [3]. The choice
of the visual effect also matter. Using underline to mark the span
of the active text under decoding provides sufficient information of
the range yet not too distracting (Figure 3(b)). On the other hand,
correction effects should catch user’s attention and thus a salient
effect with abrupt onsets [20] need to be applied. In our study, back-
ground flash was proven noticeable and preferred by users (Figure
3(a)).

Making real time decoding progress transparent to the user.
Instead of deferring the correction and displaying the raw text, the
keyboard should display in real time decoded result on the typed
text, even it is a partial result. In our studies, we found that when
some users saw uncorrected raw text, they wanted to correct it
right away, even they knew that the keyboard might correct it later.
Showing the intermediate results reveals the decoding status of the
keyboard, which increase the user confidence.

Minimizing false corrections. False correction happens when
the correctly typed text is changed to a wrong correction, which
will frustrates the user. In statistical decoding false correction is
unavoidable, but its occurrence should be minimized. In addition to
future language model quality improvement, consider the following
ways to reduce false corrections: (1) raise the threshold of correcting
an in-vocabulary word (2) enable personalization to handle out-of-
vocabulary words.

Optimizing the decoding span length. While a longer span
of active text provides the decoder with more context hence more
correction information in principle [34, 35, 37], it is not the longer
the active span the better. Even if a large n-gram language model
approximately matches the user’s input sequence, there is always a

CHI ’21, May 8–13, 2021, Yokohama, Japan Mingrui "Ray" Zhang and Shumin Zhai

chance for false-correction. Second, a longer span of active text im-
poses higher cognitive costs in terms of user attention and requires
the trust from the user. The analysis of the in-lab study showed that
users tended to immediately manually correct their errors before
the decoder took actions. While the user generally focused on the
latest word during typing [19, 32], paying attention to multiple
words would also increase the cognitive load. Third, more distant
errors that are uncorrected or falsely corrected imposes higher man-
ual correction cost. We recommend the active text span be limited
to two or three words, at least for the current mobile grade language
models. Importantly, even an active decoding span of two words
offers many fundamental benefits of phrase level typing identified
earlier in the paper, including better ability to correct space key
errors.

8.2 Future Directions of Phrase Level Typing
Larger andmore accurate language models are needed to sup-
port higher quality phrase-level decoding. Traditional word-
level decoding primarily depends on unigram and bigram language
models. Phrase-level decoding requires trigram and even higher
ngrammodels to prevent frequent back-off to unigrams and bigrams
which by definition do not maintain longer distance word connec-
tivity. However, increasing frequent high order ngram grows the
model size exponentially. Neural network language models trained
by deep learning techniques such as the smart compose model [10]
is promising at modelling longer distance language context and
may become practical on mobile devices memory and compute wise
in the near future.

Understanding and designing win-loss ratio of phrase level
typing.We expect future researchwould prove that larger andmore
powerful language models would enable longer buffer streams and
stronger corrections, which in principle allows even faster and less
precise typing at the same or better output text accuracy. However
the user attention and manual correction cost of a longer span false
correction could be nonlinear to the buffer length. Understanding
the tradeoff and design the right win-loss criteria (i.e. how much
accuracy boost should be gained before expanding to a longer
span) is another important future research direction of phrase level
typing.

Efficient error correction is needed to revert false correction.
In the deployment study, we received many comments about the
manual error correction in general and the inconvenience of lacking
an reverting interaction in particular. The cost of manually mod-
ifying the phrase-level correction is high, thus it is important to
offer the user the ability to easily revert the correction. For Gboard,
pressing backspace immediately after a space press will revert the
correction. However, as the buffer commit method would only com-
mit the first word in the active text, assigning backspace as the
reverting key conflicts with deleting characters in the active text.

8.3 Limitations
Although both in the in-lab study and the deployment study gave
evidence of benefit to PhraseFlow V2,there are undoubtedly impor-
tant limitations to the PhraseFlow project. Our search of effective
phrase typing solutions is by no means exhaustive. There could
be similar or even better UI and interaction designs than what we

iterated to in PhraseFlow V2. One limitation of the deployment
study was that we did not log quantitative data because of the
privacy concern, which prevented us from gaining more insights
on the realistic usage. PhraseFlow mainly focused on tap typing
in English language. Hence, the lessons learnt from PhraseFlow
might not apply to all languages. For some languages, the relevant
context might be three or more words away, which requires larger
language models. For languages like Chinese, phrase-level decoding
is already incorporated into the Pinyin typing methods, but after
the decoding, extra steps are required to commit the candidates.
During our study, some participants suggested it would be desirable
if the keyboard could correct multiple languages together, which
was also beyond the scope of this paper. Finally, we started but
did not get very far in phrase level gesture typing. Gesture typing
decodes at whole word level to begin with [41] and does not have
the error prone space key operations for both space insertion and
word commit.

9 CONCLUSION
In this paper, we present research on phrase level typing based
on multiple versions of the PhraseFlow keyboard prototype. The
contribution is threefold: 1) We implemented a practical phrase-
level decoder based on a widely used keyboard, and validated that
phrase-level decoding had higher accuracy on correction tasks than
word-level decoding, including space-related errors; 2) Through a it-
erative process, we designed visual feedback effects and interaction
methods that successfully reduced the cognitive load of phrase level
input; 3) Through the in-lab and deployment studies, we identified
the cognitive and behavior patterns when people using PhraseFlow,
and demonstrated the feasibility of the phrase-level decoding in
real typing settings. As powerful machine learning techniques are
boosting the field of natural language processing, we expect text in-
put to significantly improve for everyday typing experience. While
there are still improvements to make a phrase-level keyboard qual-
itatively better, PhraseFlow may provide a new baseline towards
that goal.

ACKNOWLEDGMENTS
This work was based on the first author’s research internship at
Google whichwas co-hosted by Scott Jenson. The researchwas built
on the codebase of Gboard. We thank many Google researchers and
Gboard engineers, particularly, Jianpeng Hou, Yanchao Su, Yuanbo
Zhang, and Vlad Schogol for their support, technical guidance, and
collaboration.

REFERENCES
[1] Ohoud Alharbi, Ahmed Sabbir Arif, Wolfgang Stuerzlinger, Mark D. Dunlop,

and Andreas Komninos. 2019. WiseType: A Tablet Keyboard with Color-Coded
Visualization and Various Editing Options for Error Correction. In Proceedings
of Graphics Interface 2019 (Kingston, Ontario) (GI 2019). Canadian Information
Processing Society, Kingston, Ontario, 10 pages.

[2] Rui A. Alves and Teresa Limpo. 2015. Progress inWritten Language Bursts, Pauses,
Transcription, and Written Composition Across Schooling. Scientific Studies of
Reading 19, 5 (2015), 374–391. https://app.dimensions.ai/details/publication/pub.
1046423967

[3] Saleema Amershi, Dan Weld, Mihaela Vorvoreanu, Adam Fourney, Besmira
Nushi, Penny Collisson, Jina Suh, Shamsi Iqbal, Paul N. Bennett, Kori Inkpen,
Jaime Teevan, Ruth Kikin-Gil, and Eric Horvitz. 2019. Guidelines for Human-
AI Interaction. In Proceedings of the 2019 CHI Conference on Human Factors in

https://app.dimensions.ai/details/publication/pub.1046423967
https://app.dimensions.ai/details/publication/pub.1046423967

PhraseFlow: Designs and Empirical Studies of Phrase-Level Input CHI ’21, May 8–13, 2021, Yokohama, Japan

Computing Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing
Machinery, New York, NY, USA, 1–13.

[4] Kenneth C. Arnold, Krzysztof Z. Gajos, and Adam T. Kalai. 2016. On Suggesting
Phrases vs. Predicting Words for Mobile Text Composition. In Proceedings of the
29th Annual Symposium on User Interface Software and Technology (Tokyo, Japan)
(UIST ’16). Association for Computing Machinery, New York, NY, USA, 603–608.

[5] Shiri Azenkot and Shumin Zhai. 2012. Touch Behavior with Different Postures on
Soft Smartphone Keyboards. In Proceedings of the 14th International Conference
on Human-Computer Interaction with Mobile Devices and Services (San Francisco,
California, USA) (MobileHCI ’12). Association for Computing Machinery, New
York, NY, USA, 251–260.

[6] Nikola Banovic, Ticha Sethapakdi, Yasasvi Hari, Anind K. Dey, and Jennifer
Mankoff. 2019. The Limits of Expert Text Entry Speed on Mobile Keyboards
with Autocorrect. In Proceedings of the 21st International Conference on Human-
Computer Interaction with Mobile Devices and Services (Taipei, Taiwan) (MobileHCI
’19). Association for Computing Machinery, New York, NY, USA, 1-11 pages.

[7] Xiaojun Bi, Shiri Azenkot, Kurt Partridge, and Shumin Zhai. 2013. Octopus:
evaluating touchscreen keyboard correction and recognition algorithms via. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
Association for Computing Machinery, New York, NY, USA, 543–552.

[8] Xiaojun Bi, Yang Li, and Shumin Zhai. 2013. FFitts Law: Modeling Finger Touch
with Fitts’ Law. In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems (Paris, France) (CHI ’13). Association for Computing Machinery,
New York, NY, USA, 1363–1372.

[9] Ciprian Chelba, Mohammad Norouzi, and Samy Bengio. 2017. N-gram Language
Modeling using Recurrent Neural Network Estimation. arXiv preprint cs 1 (2017),
10 pages. arXiv:1703.10724v2 [cs.CL]

[10] Mia Xu Chen, Benjamin N. Lee, Gagan Bansal, Yuan Cao, Shuyuan Zhang, Justin
Lu, Jackie Tsay, Yinan Wang, Andrew M. Dai, Zhifeng Chen, Timothy Sohn,
and Yonghui Wu. 2019. Gmail Smart Compose: Real-Time Assisted Writing.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (Anchorage, AK, USA) (KDD ’19). Association for
Computing Machinery, New York, NY, USA, 2287–2295.

[11] Nicola Dell, Vidya Vaidyanathan, Indrani Medhi, Edward Cutrell, and William
Thies. 2012. "Yours is Better!": Participant Response Bias in HCI. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (Austin, Texas,
USA) (CHI ’12). Association for Computing Machinery, New York, NY, USA,
1321–1330.

[12] Vivek Dhakal, Anna Maria Feit, Per Ola Kristensson, and Antti Oulasvirta. 2018.
Observations on Typing from 136 Million Keystrokes. In Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems (Montreal QC, Canada)
(CHI ’18). Association for Computing Machinery, New York, NY, USA, Article
646, 1-11 pages.

[13] Leah Findlater and Jacob Wobbrock. 2012. Personalized Input: Improving Ten-
Finger Touchscreen Typing through Automatic Adaptation. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (Austin, Texas, USA)
(CHI ’12). Association for Computing Machinery, New York, NY, USA, 815–824.

[14] Andrew Fowler, Kurt Partridge, Ciprian Chelba, Xiaojun Bi, Tom Ouyang, and
Shumin Zhai. 2015. Effects of Language Modeling and Its Personalization on
Touchscreen Typing Performance. In Proceedings of the 33rd Annual ACM Con-
ference on Human Factors in Computing Systems (Seoul, Republic of Korea) (CHI
’15). Association for Computing Machinery, New York, NY, USA, 649–658.

[15] Mayank Goel, Leah Findlater, and Jacob Wobbrock. 2012. WalkType: Using
Accelerometer Data to Accomodate Situational Impairments in Mobile Touch
Screen Text Entry. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (Austin, Texas, USA) (CHI ’12). Association for Computing
Machinery, New York, NY, USA, 2687–2696.

[16] Joshua Goodman, Gina Venolia, Keith Steury, and Chauncey Parker. 2002. Lan-
guage Modeling for Soft Keyboards. In Proceedings of the 7th International Con-
ference on Intelligent User Interfaces (San Francisco, California, USA) (IUI ’02).
Association for Computing Machinery, New York, NY, USA, 194–195.

[17] Google. 2020. Gboard Android Play Store Page. Google. https://play.google.com/
store/apps/details?id=com.google.android.inputmethod.latin

[18] Sandra G. Hart and Lowell E. Staveland. 1988. Development of NASA-TLX
(Task Load Index): Results of Empirical and Theoretical Research. In Human
Mental Workload, Peter A. Hancock and Najmedin Meshkati (Eds.). Advances in
Psychology, Vol. 52. North-Holland, New York, 139 – 183.

[19] B. E. John and A. Newell. 1989. Cumulating the Science of HCI: From s-R
Compatibility to Transcription Typing. SIGCHI Bull. 20, SI (March 1989), 109–114.

[20] John Jonides and Steven Yantis. 1988. Uniqueness of abrupt visual onset in
capturing attention. Perception & Psychophysics 43 (1988), 346–354.

[21] Slava Katz. 1987. Estimation of probabilities from sparse data for the language
model component of a speech recognizer. IEEE transactions on acoustics, speech,
and signal processing 35, 3 (1987), 400–401.

[22] VI Levenshtein. 1966. Binary Codes Capable of Correcting Deletions, Insertions
and Reversals. In Soviet Physics Doklady, Vol. 10. Springer, Soviet, 707.

[23] I. Scott MacKenzie. 2015. A Note on Calculating Text Entry Speed. https:
//www.yorku.ca/mack/RN-TextEntrySpeed.html

[24] I. Scott MacKenzie and R.William Soukoreff. 2003. Phrase Sets for Evaluating Text
Entry Techniques. In CHI ’03 Extended Abstracts on Human Factors in Computing
Systems (Ft. Lauderdale, Florida, USA) (CHI EA ’03). Association for Computing
Machinery, New York, NY, USA, 754–755.

[25] Srdan Medimorec and Evan F. Risko. 2017. Pauses in written composition: on the
importance of where writers pause. Reading and Writing 30 (2017), 1267–1285.

[26] Microsoft. 2020. SwiftKey Homepage. Microsoft. https://www.microsoft.com/en-
us/swiftkey

[27] G. A. Miller. 1956. The magical number seven plus or minus two: some limits on
our capacity for processing information. Psychological review 63 2 (1956), 81–97.

[28] Nielsen Norman. 2020. 10 Usability Heuristics for User Interface Design. https:
//www.nngroup.com/articles/ten-usability-heuristics/

[29] Tom Ouyang, David Rybach, Françoise Beaufays, and Michael Riley. 2017. Mobile
Keyboard Input Decodingwith Finite-State Transducers. arXiv:1704.03987 [cs.CL]

[30] Richard W Pew. 1966. Acquisition of hierarchical control over the temporal
organization of a skill. Journal of experimental psychology 71, 5 (1966), 764.

[31] Philip Quinn and Shumin Zhai. 2016. A Cost-Benefit Study of Text Entry Sugges-
tion Interaction. In Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems (San Jose, California, USA) (CHI ’16). Association for Com-
puting Machinery, New York, NY, USA, 83–88.

[32] Timothy Salthouse. 1986. Perceptual, Cognitive, and Motoric Aspects of Tran-
scription Typing. Psychological bulletin 99 (06 1986), 303–19.

[33] John Sweller. 1988. Cognitive load during problem solving: Effects on learning.
Cognitive Science 12, 2 (1988), 257 – 285.

[34] Keith Vertanen, Crystal Fletcher, Dylan Gaines, Jacob Gould, and Per Ola Kris-
tensson. 2018. The Impact of Word, Multiple Word, and Sentence Input on Virtual
Keyboard Decoding Performance. In Proceedings of the 2018 CHI Conference on Hu-
man Factors in Computing Systems (Montreal QC, Canada) (CHI ’18). Association
for Computing Machinery, New York, NY, USA, 1–12.

[35] Keith Vertanen, Dylan Gaines, Crystal Fletcher, Alex M. Stanage, Robbie Watling,
and Per Ola Kristensson. 2019. VelociWatch: Designing and Evaluating a Virtual
Keyboard for the Input of Challenging Text. In Proceedings of the 2019 CHI Con-
ference on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI ’19).
Association for Computing Machinery, New York, NY, USA, 1–14.

[36] Keith Vertanen and Per Ola Kristensson. 2014. Complementing Text Entry
Evaluations with a Composition Task. ACM Trans. Comput.-Hum. Interact. 21, 2,
Article 8 (Feb. 2014), 10 pages.

[37] Keith Vertanen, Haythem Memmi, Justin Emge, Shyam Reyal, and Per Ola Kris-
tensson. 2015. VelociTap: Investigating Fast Mobile Text Entry Using Sentence-
Based Decoding of Touchscreen Keyboard Input. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Systems (Seoul, Republic of
Korea) (CHI ’15). Association for Computing Machinery, New York, NY, USA,
659–668.

[38] DarylWeir, Henning Pohl, Simon Rogers, Keith Vertanen, and Per Ola Kristensson.
2014. Uncertain Text Entry on Mobile Devices. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (Toronto, Ontario, Canada)
(CHI ’14). Association for Computing Machinery, New York, NY, USA, 2307–2316.

[39] Christopher D Wickens, Justin G Hollands, Simon Banbury, and Raja Parasura-
man. 2015. Engineering psychology and human performance. Psychology Press,
New York.

[40] Ying Yin, Tom Yu Ouyang, Kurt Partridge, and Shumin Zhai. 2013. Making
Touchscreen Keyboards Adaptive to Keys, Hand Postures, and Individuals: A
Hierarchical Spatial BackoffModel Approach. In Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems (Paris, France) (CHI ’13). Association
for Computing Machinery, New York, NY, USA, 2775–2784.

[41] Shumin Zhai and Per Ola Kristensson. 2012. TheWord-Gesture Keyboard: Reimag-
ining Keyboard Interaction. Commun. ACM 55, 9 (Sept. 2012), 91–101.

[42] Mingrui Ray Zhang and Jacob O. Wobbrock. 2019. Beyond the Input Stream:
Making Text Entry Evaluations More Flexible with Transcription Sequences.
In Proceedings of the 32nd Annual ACM Symposium on User Interface Software
and Technology (New Orleans, LA, USA) (UIST ’19). Association for Computing
Machinery, New York, NY, USA, 831–842.

[43] Mingrui Ray Zhang, Shumin Zhai, and Jacob O. Wobbrock. 2019. Text Entry
Throughput: Towards Unifying Speed and Accuracy in a Single Performance
Metric. In Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing Machinery,
New York, NY, USA, Article 636, 11-22 pages.

[44] Suwen Zhu, Tianyao Luo, Xiaojun Bi, and Shumin Zhai. 2018. Typing on an
Invisible Keyboard. In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems (Montreal QC, Canada) (CHI ’18). Association for Computing
Machinery, New York, NY, USA, 1–13.

https://play.google.com/store/apps/details?id=com.google.android.inputmethod.latin
https://play.google.com/store/apps/details?id=com.google.android.inputmethod.latin
https://www.yorku.ca/mack/RN-TextEntrySpeed.html
https://www.yorku.ca/mack/RN-TextEntrySpeed.html
https://www.microsoft.com/en-us/swiftkey
https://www.microsoft.com/en-us/swiftkey
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://arxiv.org/abs/1704.03987

	Abstract
	1 INTRODUCTION
	2 Challenges of Designing PhraseFlow
	3 RELATED WORK
	3.1 Keyboard Decoding Models
	3.2 Phrase-level Text Entry
	3.3 Interaction and Interfaces for Touch Screen Keyboards

	4 Phrase-Level Decoder
	5 PhraseFlow V1.0
	5.1 Interface and Interaction Design
	5.2 Study 1: Evaluating Design Options
	5.3 Study 2: Performance Simulation of PhraseFlow V1.0
	5.4 Study 3: Pilot Study of PhraseFlow V1.0
	5.5 Discussion of the Pilot Study

	6 PhraseFlow V2.0
	6.1 Buffer commit method
	6.2 Real Time Correction Feedback
	6.3 Study 4: In-lab Study of PhraseFlow V2.0
	6.4 Results
	6.5 Discussion of the In-lab Study

	7 Study 5: Deployment Study
	7.1 Preparation
	7.2 Participants
	7.3 Procedure
	7.4 Results

	8 Discussion
	8.1 Design Suggestions for Phrase-level Decoding Keyboard
	8.2 Future Directions of Phrase Level Typing
	8.3 Limitations

	9 Conclusion
	Acknowledgments
	References

